リニアテーパ線路型コニカルモノポールアンテナの 反射減衰量

著者	古屋 喜芳,川又 憲,嶺岸 茂樹
雑誌名	東北学院大学工学部研究報告
巻	48
号	1
ページ	1-5
発行年	2014-02
URL	http://id.nii.ac.jp/1204/00000124/

研究論文

リニアテーパ線路型コニカルモノポールアンテナの反射減衰量

Return loss of conical monopole antenna linear tapered line

古屋喜芳* 川又憲** 嶺岸茂樹** Kiyoshi FURUYA Ken KAWAMATA Shigeki MINEGISHI

Abstract: A conical monopole antenna with linear tapered line was proposed. The characteristic impedance of the antenna changes from 50Ω to the free space impedance linealy. This antenna is a radiator of impulsive electromagnetic wave. The purpose is a radiation of the impulsive electromagnetic wave by the high voltage discharge. Therefore, the antenna can be formed the discharging electrode on the feeding point , endure the high voltage, and be broadband. As a result of experiment, return loss was less than -10dB from 1.8GHz to 9GHz

Keywords: conical monopole antenna, ESD

1 はじめに

近年,ハードディスクや携帯電話などにおい て静電気放電(ESD)による機器の誤作動が問題 となっている.電気電子システム内部では情報 伝達のデジタル化が進み,システムの高速化, 高速処理化が図られているが,情報伝達信号の 低レベル化により外来電波雑音,特に ESD など のインパルス性電磁界の影響を受けやすい傾 向があり,EMC 環境電磁工学上の重大な問題と なっている.ESD に伴うインパルス性放電は振 幅が kV でパルス幅が数十ピコ秒であり,広帯域 な周波数スペクトルを有するため,その現象の 把握は困難をきわめる.

そこで本研究では,高電圧の印加が可能で,放 電に伴うインパルス性電磁波の放射器として 用いることのできるリニアテーパ線路型コニ カルモノポールアンテナ(Fig.1)を設計試作 した.このリニアテーパ線路型コニカルモノポ ールアンテナの特徴としては特性インピーダ ンスが 50~377Ω(自由空間インピーダンス)ま

** 東北学院大学

で直線に変化すること,給電点に放電電極が作 製でき,また広帯域であることがあげられる.

またアンテナを電波無響室内で反射減衰量 と VSWR, TDR の測定を行った. 不均一線路の場合, 特性インピーダンスが不整合部分から, 電圧が 透過波と反射波に分かれ, 多重反射が起こる. よって測定した多重反射の値を含む TDR の値か ら, アンテナが設計通りの特性インピーダンス 分布であるかを確認した.

Fig.1 リニアテーパ型コニカルモノポール アンテナ

^{*} 東北学院大学大学院

2 設計

リニアテーパ線路型コニカルモノポールア ンテナは,給電点のアンテナの頂角から垂直の 長さのアンテナ長に沿って特性インピーダン スが 50~377Ω(自由空間インピーダンス)まで 直線的に変化する(Fig.2).

Fig.2 特性インピーダンスとアンテナ長の変化

このリニアテーパ線路型コニカルモノポー ルアンテナ設計は,コニカルアンテナ(Fig.3)の 特性インピーダンスを導く式(1)を用いて行っ た¹⁾.

$$Z_0(x) = \frac{\eta}{2\pi} \ln \cot\left(\frac{\varphi(x)}{2}\right) \dots (1)$$

x はアンテナの縦の長さ, $Z_0(x)$ は特性インピ ーダンス, η は自由空間インピーダンス, $\varphi(x)$ はアンテナの半頂角である.

Fig.3 コニカルアンテナ

式(1)によりコニカルアンテナの特性インピ ーダンスは, φ(x)の半頂角に依存していること が分かる. 式(1)を変形して**φ(x)**を求めると

$$\varphi(x) = 2 \tan^{-1} \left(\frac{1}{\exp\left(\frac{Z_0(x)}{60}\right)} \right) \dots (2)$$

となる.

このコニカルアンテナの半頂角 $\varphi(\mathbf{x})$ を導く 式(2)を用いて, Fig.2のアンテナ長に沿った,50 ~377 Ω (自由空間インピーダンス)までの特性 インピーダンスの値で代入していけば,各長さ \mathbf{x} に対応する $\varphi(\mathbf{x})$ が導ける.各長さ \mathbf{x} の値と,そ の長さ \mathbf{x} に対応した $\varphi(\mathbf{x})$ の値によって,アンテ ナの形が決定される.

Fig.4 に作製したリニアテーパ型コニカルモ ノポールアンテナの平面図を示す.設計上はア ンテナ長の分解能を 0.01mm として計算を行 った.

Fig.4 リニアテーパ型コニカルモノポール アンテナの平面図

この平面図 (Fig.4) をもとにリニアテーパ型 コニカルモノポールアンテナを作製し た. (Fig.1).材料には真鍮を使用した. アンテナ 長Lは 300mm, 最大口径 36. 1mmφ である. ア ンテナの頂角には給電点を設けるために 1mmφ の穴を空け, SMA コネクタによって給電 する構造になっている.

3 測定

電波無響室にて,アース板(1 m²)中央にリニ アテーパ線路型コニカルモノポールアンテナ を置き,アース板を同軸ケーブル(2m)でネット ワークアナライザに繋ぎ,各測定を行った.測 定装置の概略を Fig.5,実際の電波無響室内の実 験風景を Fig.6 に示す.

Fig.5 測定装置

Fig.6 電波無響室内での実験風景

3.1 TDR 測定

Fig.7 は測定によるリニアテーパ型コニカル モノポールアンテナの TDR である.TDR は,ア ンテナに200mVのスッテプ波を印加し,給電点 (Input)からアンテナ先端(Aperture)までの電 圧値を,時間領域でみることができる.

測定したアンテナの TDR をみると,給電点が 容量性で少し下がり,曲線状となってる.

これは多重反射によるものである.したがっ て Fig. 8 ののように,アンテナの給電点(input) から先端(aperture)まで,特性インピーダンス が Z_0 から Z_{n-1} まで変化するものとして,多重反 射を考えると,入力電圧 V_{IN} が, Z_0 と Z_1 との間で 透過波と反射波に分かれ,時間 t_1 において電圧 **v**₁, t₂おいてv₂,... t_nおいてv_nなどのように出て くる(Fig. 8).そのため,Fig.11の多重反射を含ん だ結果から逆算することによって,実際にアン テナがの特性インピーダンス分布を求めるこ とができる.その結果を Fig. 9 に示す.

Fig.9 リニアテーパ線路型コニカル モノポールアンテナの特性インピーダンス

多重反射を考慮した結果から,リニアテーパ線路 型コニカルモノポールアンテナの特性インピーダ ンス分布は,直線状となったが,設計した特性インピ ーダンスより低い値になっていることが分かる.これ はリニアテーパ線路型コニカルモノポールアンテ ナの設計は伝送線路として設計して放射を考慮し ていないため,実際のアンテナは放射により特性イ ンピーダンスが低い値になったと考えられる.

3.2 VSWR の測定

まず実測の前に計算による VSWR を求めた. 給電点からアンテナ先端までの不均一線路 の反射係数 Γ (f)は次式で与えられる^{2,3,4,5,6)}.

$$\Gamma(f) = \frac{1}{2} \int_0^L e^{i\beta x} \frac{d}{dx} \ln Z_0(x) dx...(3)$$

位相定数 $\beta = \frac{2\pi}{\lambda}$,波長 $\lambda = \frac{c}{f}$, c は位相速度, f は 周 波 数, L = 0.3[m].また,電圧定在波比 (VSWR)は

$$VSWR = \frac{1 + |\Gamma(\mathbf{f})|}{1 - |\Gamma(\mathbf{f})|} \dots (4)$$

となる.

リニアテーパ線路型コニカルモノポールアンテ ナの VSWR の計算値を Fig.10 に示す.

計算値では 1.0GHz から,VSWR が 2 以下と なり,VSWR のいわゆる"山"となると周波数 間隔が約 1/2 波長で線路長に依存していること が分かる.また周波数が高くなるほど,VSWR が低くなる結果となった.これが特性インピー ダンスが不均一である伝送線路型アンテナの

Fig.11 実測によるリニアテーパ線路型コニカ ルモノポールアンテナの VSWR

実測値も周波数間隔が約 1/2 波長で線路長に 依存しているが, VSWR は 1.8GHz から 2 以下 となっている.

計算値と実測値に若干の差が生じた理由は まず Fig.10の計算値の場合,式(3)から明らかな ように,多重反射を考慮していないこと,完全導 体として扱っているためと考えられ,それに対 して Fig.11 の実測値の場合,Fig.7 の給電点 (input)でのわずかな反射(不均一線路の場合わ ずかな反射が,線路全体の周波数特性に大きな 影響を与える),線路が完全導体ではない,アー ス板が有限大,などが考えられる.

3.3 反射減衰量の測定

本研究の目的は,ある特定の通信アンテナで はなく,より多く放射する放射器であるので,そ の放射量を反射減衰量で検討する.

測定した反射減衰量を Fig.12 に示す.

反射減衰量は 1.8GHz 以上において,-10dB 以下であった.また周波数間隔が約 1/2 波長で 線路長に依存していることが分かる.

たとえば、市販のバイコニカルアンテナの場 合、VSWR≤2.8,反射減衰量≤-6dB であるので、 それと比較した場合、放射量は多いといえる.だ た、本研究の目的は、通信用アンテナではなく、 不均一伝送線路構造をもつアンテナとしてこ のアンテナを提案し、将来的に ESD に伴う放射 量を把握することにあるため、従来の技術とは 単純に比較できないと思われることから、より 多く放射する放射器という表現とした.

4 結論と今後の展開

リニアテーパ線路型コニカルモノポールアンテ ナの TDR の結果は,特性インピーダンスが設計よ り低い値となったが,直線的になることが分かった. これはアンテナ放射により電圧が下がること と,VSWR から見られるように,不均一伝送線路型 アンテナであるため,アンテナ長の 1/2 波長以下の 周波数帯では不均一伝送線路として動作しな いことがあげられる.そこで今後は,1/2 波長よ り以下の周波数帯をカットした,TDR の測定を 考慮した測定を検討している.また周波数が高 くなるほど,VSWR が低くなる.これは,特性イ ンピーダンス分布が不均一である伝送線路型 のアンテナの特徴であるが,実測の VSWR は給 電点の影響を大きく受けるので,給電点を改良 する必要がある.

今回のリニアテーパ線路型コニカルモノポール アンテナは特性インピーダンスが直線状となるアン テナであるが,今後は指数関数やヒル関数のような 特性インピーダンスの変化にバリエーションを増や したアンテナの試作設計を検討し,そのアンテナの 利得や指向性を測定を行う予定である.

参考文献

 S.A.SCHELKUNOFF "Theory of Antennas of Arbitrary Size and Shape" Proceeding of the IRE, Vol.29 Issue.9 (Sept.1941)pp473/521
Robert C Shaw " Fourier Transforms in the Theory of Inhomogeneous Transmission Lines" PROCEEDINGS OF THE I.R.E (November 1950), p.1354

3) HERBERT.J.SCOTT,SENIOR.MEMBER "The Hyperbolic Transmission Line as a Matching Section" PROCEEDINGS OF THE I.R.E (November 1953), p.1654/1657

4) MASANORI KOBAYASHI, NARUTOSHI SAWADA "Analysis and Synthesis of Tapered Microstrip Transmission Lines" IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL.40 NO.8 (August 1992) p.1642/1646

5)R.W.KLOPFENSTENT "A Transmission Line Taper of Improved Design" PROCEEDINGS OF THE I.R.E (January 1956) p.31/35

6) R.E.COLLIN "The Optimum Tapered Transmission Line Matching Section " PROCEEDINGS OF THE I.R.E (April 1956) p.539/548