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Abstract　We present a classically chaotic model in two-dimension whose Hamiltonian is C3v-

symmetric and is bounded from below. In its quantal version, the ground state wave function 
and the energy eigenvalues of the Hamiltonian for low quantum numbers are exactly 
known. Excited energy levels with higher quantum numbers are calculated by numerically 
solving simple algebraic equations. The energy spectrum does not depend on the model param-
eter which is relevant to the O(2)-breaking. Schrödinger equation for the excited states is 
reduced to a set of recursion differential equations. The energy eigenstates are easily con-
structed by solving this recursion equation. The level statistics is Poissonian and the level-

crossings are observed. We finally note the occurrence of the spontaneous symmetry breaking 
in the O(2)-symmetric model.  
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1. Introduction

The Hénon-Heiles (HH) potential, which was first presented to analyse astrophysical stability prob-

lem of galaxy, has arrested much attention in the field of deterministic chaos because of its conceptual 

simplicity (Hénon and Heiles 1964). It is a one-body potential of two degrees of freedom that is au-

tonomous and non-singular, and has C3v symmetry of the point group. Geometrically, the HH poten-

tial has a hollow surrounded by convex foots of walls, a similarity to the Sinai’s billiards, in which ex-

ponential separation of the classical paths is known to take place through repeated elastic collisions 

with fixed spheres (Sinai 1970). Non-integrability, the necessary condition for chaos, is realized by 

the O(2) breaking. Surely, the HH model has excited interests on chaos in conservative systems with 

a non-trivial potential.

On the other hand, whether the system inherits some chaotic nature after quantization has been an 

intriguing question because the Heisenberg’s uncertainty inhibits precise determination of orbits in 

phase space. Phenomenologically, there are several criteria for ‘quantum chaos’ (Weissman and Jort-

ner 1981) : avoided crossing of energy levels, avoided contour crossing in wave function, irregulari-
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ties in spatial and temporal behaviour of wave function, etc. Of course, whether a quantum system 

with these features is worth to be said chaotic is questionable. For instance, some authors claim that 

quantum chaos does not exist in such a quantized classically chaotic system as the Arnord’s cat map 

because of the absence of enough complexity in physical quantities in the classical limit (Ford et al. 

1991; Ford and Mantica 1992. However, see Belot and Earman 1997). More pertinent problem to 

be addressed is therefore by what generic quantal features the classically chaotic quantum systems are 

discriminated from the classically integrable quantum systems. This may be what Berry aimed by 

advocating quantum chaology (Berry 1989a). The problem addressed in this way can be extended to 

the quantum field theory, since we know even a well-known renormalizable quantum field theory ex-

hibits chaos in classical dynamics (Takahashi 2010).

In the context of chaos, it is natural to give an attention to randomness in any sense observed in the 

quantal system. According to the random matrix theory, the randomness of the Hamiltonian is spe-

cifically manifested by the Wigner distribution of the energy levels (Wigner 1951, Mehta 

2004). Such a classically chaotic system as the kicked rotator is in fact known to leads via quantiza-

tion, to a system with a (pseudo) random Hamiltonian (Fishman et al. 1982, Grempel and Prange 

1984). Another important question then naturally arises : whether the classical chaos always implies 

quantal Wigner distribution, which is remaining unsolved.

Several authors sought signatures of chaos in the quantized system of the HH-type by diagonalizing 

the Hamiltonian in terms of a large set of the wave functions of the unperturbed harmonic oscillator 

(Pomphrey 1974, Noid et al. 1980, Weissman and Jortner 1981, Pullen and Edmonds 1981a, Park 

2001). In the HH-like model, Cremers and Mielke (1999) employed the ‘flow equation’ that makes 

the Hamiltonian diagonal by continuous unitary transformation. Pomphrey (1974), Noid et al. 

(1980), Pullen and Edmonds (1981a) and Park (2001) have observed the avoided level crossings that 

give rise to the Wigner distribution for the level spacings and are usually regarded as the sign of quan-

tum chaos due to the non-integrability and/or the sensitivity on the coupling of the underlying dynam-

ics (Wigner 1951, Pechukas 1983, Yukawa 1985, Gaspard 1990).

Nevertheless, something worrisome has been left aside : the original HH potential and many HH-

type potentials do not have the global minimum and there remains an insecurity about the meaning of 

eigenvalue or eigenfunction, especially near the escape energy. This casts a doubt for the meaning of 

the level statistics. To the author’s knowledge, no bounded and tractable C3v symmetric potential 

models have been known so far.

A physically well-defined model calculation was performed by Pullen and Edmond (1981b). They 
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utilized a bounded C4v symmetric potential that displays chaos in classical mechanics. In its quantum 

mechanical version, they observed level repulsions. Their result seemed to provide an example of a 

quantal criterion for the classical chaos.

Studying continuous potential models is important in relation to molecular or atomic physics but 

not an easy task, as long as chaos is concerned. The traditionally employed diagonalization method 

needs a very large number of base functions to approach the true eigenfunctions of the Hamiltonian, 

even if symmetries are taken into account. In addition, a large mixture of the base functions general-

ly obscures the meaning of the quantum numbers associated to the constructed eigenfunction. 

In the circumstance described above, for the pursuit of ‘quantum chaos’ in the potential problem, it 

will be worthwhile to proceed on an inverse route. Namely, adopting a certain function with required 

properties as a candidate of a wave function, we may find a Hamiltonian that yields the presumed 

function as an exact eigenfunction of that Hamiltonian. Its energy eigenvalue may also be known 

exactly. Remaining (excited) energy levels will then be found by solving a set of treatable equa-

tions. The associated eigenstates will be constructed as an infinite series of angular momentum states 

that are calculated recursively.

The core ingredient of the calculation method presented in this paper is a perturbative expansion in 

some combinations of model parameters and is distinct from the semiclassical approximation that has 

so far widely used to bring about steady developments in the field of quantum chaos. One of them is 

due to Berry and Tabor (1977) who showed that, in the regular systems, the generic distribution of the 

level spacing is Poissonian. On the other hand, there seems to be a widely pervaded expectation, but 

with no proof, that the quantum level spacings for the classically chaotic system should obey the 

Wigner distribution. Quite interestingly, our model, solvable for the energy spectrum, will show an 

opposite property : classically the system exhibits chaos, and after quantization, its energy spectrum 

obeys the Poisson distribution. 

In this paper, we proceed the way similar to solving the inverse problems : we first assume the 

form of the wave function with a required symmetry property for a spin-zero particle trapped in a po-

tential and then construct a two-dimensional Hamiltonian that is bounded from below, C3v-invariant 

and exhibits classical chaos. We elaborate the method of solving the Schrödinger equation and in-

spect the properties of the solutions by paying attention to the energy spectrum and the pattern of the 

wave function with low quantum numbers.
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2. Bounded C3v-symmetric model

The Schrödinger equation for a particle moving under the influence of the potential V in two-di-

mension (the coordinate is q ,q q1 2=^ h) is given by

　　　　　　　　　　　　　 ,i t H E
2
2
U U U= =  (2.1a) 
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　　　　　　　　　　 , ,q iq p ip
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1 2 1 2= +{ P= -^ ^h h  (2.1c)

where H and E are the Hamiltonian and its eigenvalue, /i= 22{P -  and /i *= 22{P -*  are the 

momentum operators conjugate to the newly introduced spatial coordinate variables { and *{ , respec-

tively. The asterisk denotes the hermitian conjugate. The quantization condition reads (we choose 

the natural unit ħ＝1)

　　　　　　　　　　　　　　 , , .i*= ={ {P P -*6 6@ @  (2.2)

q ,V V */ { {^ ^h h is the one-body potential. The potential of the classical HH model takes the form 

(Hénon and Heiles 1964)

　　　　　　　　　　 , / ,V p i2* * *p p p
HH { { { { { {= - +-^ _ ^^h i h h  (2.3)

with p＝3. In this case, the second term on the r.h.s. of (2.3) is proportional to 3q1
2q2－q2

3. The 

point group symmetry C3v that involves the reflection R with respect to q2 axis, i.e., the interchange  

*){ {-  are obvious. On the other hand, O(2)～U(1) invariance under the global phase change of { 

is broken. Irrespective of this breaking, we shall see later that the ‘angular momentum quantum 

number’ is useful to label the wave functions. 

For the wave function, we substitute the function of the form

　　　　　　　　　　　　　　　 ,Ae ,f *
=U { {^ h  (2.4)

to the eigenvalue equation ,H E=U U  where A is the normalization constant. We obtain

　　　　　　　　　　　　
.f f f V E+ =2 2 U U- - **22^ h  (2.5)

(Here and hereafter, abbreviations / , / *2 22 2 22/ /{ {*  are used.)　This implies that if the potential is 

of the form
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　　　　　　　　　　　　 ,V f f f E* 022 2 2= + +*  (2.6)

then the function (2.4) is a solution of the eigenvalue equation (2.5) with the energy eigenvalue 

E0. We would like to find V that is derived from a function ,f *{ {^ h through (2.6) and resembles VHH 

as much as possible. In other words, V should be C3v-invariant, be bounded from below, be a poly-

nomial in { and *{  with as low a power as possible. This procedure resembles solving the well-

known inverse problems that aim to find the cause from the effect and are employed in a wide range 

of research fields (For a review, see, e.g., Groetsch 1999, Samarskii and Vabishchevich 2007). For 

our purpose, however, we will not need any of the detailed knowledge of the highly technical and 

complicated the methods. Once V is found, we will directly solve (2.5) to find the excited states by a 

simple approximation method.

We adopt the following form for f as the simplest one

　　　　　　　　　　　 ,f a p
b i* * *p p p{ { { { { {= - +-^ ^ ^^h h h h  (2.7a)

　　　　　　　　　　　 , 0,a x a x p
a x a1
2

<p
1

2 1
2+ +/ + /2^ ^h h  (2.7b)

where p is a positive integer in order for the wave function to be single-valued. There are three pa-

rameters a1, a2 and b that are supposed to be real in this paper. This implies f is also real. We write 

the corresponding wave function (2.4) as 0U . For the normalizability of 0U , a2 must be nega-

tive. With this choice for the form of f, 0U  consists of infinite number of states with the angular mo-

menta equal to integer multiples of p.

From (2.6) and (2.7), the potential takes on the form

　　　 .
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V is bounded from below for arbitrary p＞0.　We readily see that V with p＝3 is the preferable one to 

construct an HH-type potential. We restrict ourselves to this case hereafter. All of a1, a2 and b con-

tribute to the breaking of U(1), which is recovered by setting b＝0. For p＝3, the number of the 

types of ‘interactions’ is four, while the number of the independent control parameters is three. The 

effect of this restriction on the number of the control parameters may manifest itself as a special pat-

tern of the energy spectrum. We will come back to this point later. For convenience, we require V 

to vanish at the origin. This implies E0＝－a1. In the most part of this paper, the parameters are 

fixed as a1＝a2＝－1, b＝1.
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Note that, while the wave function 0U  depends on all the three parameters, the energy E0 is indepen-

dent of a2 and b. This is also understood by examining the identities :

　　　　　　　　　　 ,a
E f f d d*

*
* *

1
+

2
2

2 2{ { { {U U= ^ h#   (2.9a)

　　　　　　　　 ,a
E f f d d2*

*
* * *

2
+

2
2

2 2{ { { { { {U U= +^ h#  (2.9b)

　　　　　　　　　　 .b
E i f f d d*

* * *3 2 2

2
2

2 2{ { { {U U= -^ h#  (2.9c)

These are derived from the Hellmann-Feynman theorem together with (2.6) and (2.7). Inserting the 

form (2.4) for the wave function into (2.9b) and (2.9c) and noting /f 2* *
0 0 0 0=2 2U U U U^ h  etc, we see 

that the r.h.s. of (2.9b) and (2.9c) identically vanish for ,H E=U U /f 2* *
0 0 0 0=2 2U U U U^ h, while the r.h.s. of (2.9a) is equal to 

minus one.

Fundamental properties of the classical dynamics described by the above Hamiltonian are as fol-

lows. There exists seven fixed points in the phase space with zero momentum. Their spatial coor-

dinates are O (0, 0), A (0, 0.3088), B (0.7071, 1.2247) and those obtained by rotations 2π/3 and 4π/3 

of A and B about the origin in the q1-q2 plane. Their total energies are Eo＝0, EA＝－0.0189 and EB

＝－1, respectively. Eigenvalues of the Jacobian matrix associated with each of these equilibrium 

points are λo＝±1 (doubly degenerated), λA＝±1.435, ±1.188i and λB＝±2.449i, ±4.243i, respec-

tively. B is stable, while O (saddle) and A (saddle-centre) are unstable.

There exist regions in the parameter space where classical chaos is observed. The critical energy 

for the transition from regular to chaotic motion may be Ec≈0. In Fig. 1 we present an example of 

the Poincare sections of various classical orbits with E＝0.2. We readily admit a sea of chaotic mo-

tions surrounding islands of regular (i.e., quasiperiodic) motions.

In Fig. 1, we also present the Poincare sections for a1＝a2＝－1, b＝0.1 and E＝0.1. (The pattern 

for E＝1 is quite similar to that for E＝0.1, which we do not display here.) Being obviously distinct 

from the result for b＝1, we see that the pattern of the chaotic orbital motions is sensitive to the pa-

rameter b.

For a later use, we show an example of the almost periodic orbit in real space in Fig. 2. The ener-

gy is chosen as E＝46.862. (In a two dimensional autonomous system, the orbit that smoothly closes 

is periodic because of the energy conservation. The orbit in Fig. 2 is ‘almost’ periodic in a sense 

that finer tunings of the initial condition will improve the orbital pattern toward perfect periodicity.) 

For the classical orbits in the HH model, Noid and Marcus (1977) have noted two types. One is the 

‘precessing’ orbit that keeps C3v symmetry as a whole. The other is the ‘librating’ orbit that breaks 
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C3v. The orbit shown in Fig. 2 corresponds to the former. It is easy to examine by numerical calcu-

lations that this orbit is surrounded by dense chaotic orbits.

3. Eigenvalue equation

Now let us go back to quantum mechanics and try to seek energy eigenvalues and eigenfunctions of 

the system (2.1). We write the wave function with the energy eigenvalue E as

　　　　　　　　　　　　　　　　 .e ,Q
0

*
U U= { {^ h  (3.1)

Fig. 1　The Poincare sections at p1=0 of orbits with various initial conditions under the potential (8). Upper 
panel : a1＝a2＝－b＝－1 and E＝0.2.　Two sheets are superimposed. Lower panel : a1＝a2＝ 
－1, b＝0.1 and E＝0.1.  
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Substituting (3.1) into (2.5), we have

　　　　　　　　　　　 ,Q Q Q f Q f Q 022 2 2 2 2 22 f+ + + + =* * * *  (3.2)

where E E0/f -  and .f a a i b* *
1 2

3 22 { { { {= + +^ h  Q may again involve the states of unlimitedly 

higher angular momenta via the coupling with *p p{ {+-^ h -term in V. 

For a later convenience, we introduce functions

　　　　　 /2, /2.c s,
* *

,
* *

j k
j k j k

j k
j k j k/ /{ { { { { { { {+- - -- -^ ^_ ^ ^_h h i h h i  (3.3)

These are products of a power of {  and trigonometric functions. cj,k and sj,k themselves are eigen-

functions of R with the eigenvalues ＋1 and －1, respectively. Operation of c0,p in the potential V on 

cj,k and sj,k increases their indices by p, e.g., c0,pcj,k＝(cj＋p,k＋cj,k＋p)/2. Together with the R invariance 

this suggests that the generic eigenstates involve the terms cj,k (R＝＋1) or sj,k (R＝－1) where j’s (and 

k’s) are all equal modulo p. Furthermore, eigenstates will be doubly degenerated except for  j＝k for 

which sj,k identically vanishes. Hereafter we restrict ourselves to the case of R＝＋1.

Our ansatz for the functional form of Q is 

　　　　　　　　　　 , / , ,lnQ x c p Y*
, ,

*
p j k0{ { a b { {= + +^ ^ ^ ^h h h h  (3.4a)

　　　　　　　　　 , , .Y x L x c x,
*

' , '

'
', ' ', 'j k

j j k k

j
j k j k

2/{ { {=
3

$ $

-^ ^^h hh!  (3.4b)

Summation in (3.4b) is done over all integers j´ (≥ j) and k´ (≥k) such that k´＝k, j´＝j, modulo 

p. Extracting a factor x－j´ in front of L(j΄,k΄) in (3.4b) implies j´≤k´ in order for a pole-like singularity 

Fig. 2　Unstable (almost) periodic orbit in the time interval 0≤ t ≤1000 for E＝46.862. The model parame-
ters are a1＝a2＝－b＝－1. Initial condition is q1＝2.057555…, q2＝p1＝0, p2＝7.218357…. 
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in Yj,k not to appear at x＝0. By writing ,Q *{ {^ h in the form (3.4), each of ,a b and L(j΄,k΄) has been 

assumed to be a polynomial of x. In particular, L(j΄,k΄) should not behave as an exponential 

function ; such a behaviour is expected to have been absorbed into .xa^ h

Note that the decomposition of Y in the form (3.4b) is not unique because of the identity cj,k＝xrcj－r,k－r 

that holds for arbitrary integer r. In other words, the set {xrcj,k} is overcomplete and there are some 

arbitrariness in the functional form of L(j΄,k΄) . We are going to derive a tractable sequence of equa-

tions that determine ,a b and L(j΄,k΄)  by making use of this freedom. Since the highest power of x in f 

is two, .xa^ h  may be at most quadratic in x. β is a function of c0,p only. Substituting (3.4) into (3.2), 

multiplying Y on both sides of the equation and equating the coefficient of cj΄,k΄ to zero, we have (see 

the Appendix, where  formulae useful for this procedure are given)
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　　　　　　 .h x a x p b x2 4
1 42 2 2/ f a a a b b b+ + + + + +l l l l m l l^ ^ ^h h h  (3.5b)

A single (double) prime on functions L, a, α  and β stands for the first (second) derivative of the func-

tion in terms of its variable : / , / ,d x dx d c dc, ,p p0 0a a b b= =l l^ ^h h etc. These equations look like a 

perturbative expansion of L(j,k) in terms of b and β. The advantage of our method is manifested in 

(3.5) : it is the recursion differential equation that enables us to determine higher-mode amplitudes of 

any step from those just one step before. The price one has to pay is that the differential equation is 

second-order at each step of calculation. However, the equation is linear. In addition, it is easily 

checked that the equation has normalizable solutions that is consistent with our assumption only when 

α(x) is linear in x, i.e., α΄＝constant≡α1. This makes the problem quite simple.

We first consider the case of minimum indices on the l.h.s. of (3.5a), j΄＝j, k΄＝k. In this case, the 

r.h.s. vanishes, and we have

,

L x a a x L x
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D  (3.6)

where .k j,/ -  The equation (3.6) will have various types of solutions depending on the parame-

ters. We will show that, when xLj,k-term on the l.h.s. of (3.6) is absent, the solutions can be polyno-
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mials as was assumed below (3.4) and reveal particularly interesting properties. Hereafter, we re-

strict ourselves solely to this case. 

xLj,k-term is eliminated by requiring β΄＝constant≡β1 and 

　　　　　　　　　　　　　 .b b a2 2 21
2

2 1!b a=- -  (3.7)

Let the degree of the polynomial be n. Then, writing Ln,ℓ ≡ L(j,k), we rewrite (3.6) as

　　　　　　　　　　　 0,L x
u u a x L x

v v L2, , ,n n n
0

1 2
0

1+ + + + + =, , ,m la ak k  (3.8a)

　　　　　　　　　　　　　　 , ,u u a1 20 1 1 1, a= + = +^ h  (3.8b)

　　　　　　　　 , .v a v a a210 1 1 1 1 2
2

1 1, ,f a a a a= + + + = + +^ h  (3.8c)

We expand the solution as L x x,
,

n r
n

r
n r
0=,

,

= g^ ^h h! . Substituting this into (3.8), we have a recursion 

relation (dropping the suffices n and ℓ )

　　　　　　 .a r v u r v r r u2 1 1 0r r r2 1 1 1 0 0 1g g g- + + + + + + =- +^^ ^ ^ ^h h h h h  (3.9)

Note that, for ,b a0 2b= = =l  our system is nothing but the two-dimensional harmonic oscillator 

and (3.9) implies L x,n , ^ h to be the Laguerre’s polynomials (See, e.g., Louck and Shaffer 1960). 

rg  must vanish for r＜0 or r＞n. These conditions are assured to be fulfilled by

　　　　　　　　　　　　　　　　　 ,u v 00 1 0 0g g+ =  (3.10a)

　　　　　　　　　　　　 ,u n v a n v2 1 0n n1 0 2 1 1g g+ + - + =-^ ^^h h h  (3.10b)

　　　　　　　　　　　　　　　　　 .a n v2 0n2 1 g+ =^ h  (3.10c)

Condition (3.10c) leads to a n v2 02 1+ =  or 

　　　　　　　 , .a a a n d n21 1 1
2

2! !, ,/a + = - +^ ^h h  (3.11)

1a  is real since a2＜0.

Remaining parameters u1, v0 and v1 are determined from (3.8b) and (3.8c) as

　　　　 , , , , .u d n v a d n v a n2 1 21 0 1 1 2! !, , ,f= = - + =-^ ^ ^h h h  (3.12)

Accordingly, the recursion relation (3.9) can be cast into an eigenvalue equation for an (n＋1)×(n＋1) 

matrix

　　　　　　　　　　　　　　　　　 ,W a1= fg g-^ h  (3.13a)
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where , , , n
T

0 1= gg g gg ^ h  is an  n＋1 component vector. The double signs for the diagonal compo-

nents of W are due to the double signs in (3.11). Since ,a E1f- =  W is nothing but the matrix repre-

sentation of the system’s Hamiltonian.

Note that W does not depend on the coupling b. This fact leads to a remarkable outcome of our 

model that the energy spectrum is also independent of b, provided that the r.h.s. of (3.4b) converg-

es. The whole effect of b is absorbed into the wave functions. The cause of this result is traced 

back to the eigenvalue equation (3.2) and the reduction of the number of the control parameters that 

will be the generic feature of the inverse problem. Our method will also be applicable for 

p≥4. However, whether this non-dependence on b really holds, or, equivalently, whether the r.h.s. of 

(3.4b) always converges under the condition that f is determined by the zeroth step equation (3.8), is 

an open question. Later on, we shall numerically inspect this convergence for p＝3. 

We readily see from (3.13a) and (3.13b) that the positive energy solutions will correspond to the 

lower sign of the diagonal components of W. This means that we should choose the minus sign for 

a1 1a +  in (3.11).

In passing, we note that the parameter b can be extended to complex number without spoiling the 

validity of the derivation of (3.9) or (3.13). In particular, the energy spectrum remains real for a 

complex b. In such a case, the model considered here is regarded as a member of the family of quan-

tum complex potential models (Bender et al. 2001 and references cited therein).

For a given n, the eigenvalue equation is an algebraic equation of degree n＋1, which yields real 

roots for f provided that ℓ≥－n. Among them only the largest real one seems to allow Ln,ℓ’s to share 

the common feature of the orthogonal polynomial system : the components of g have alternating 

signs. Furthermore, only in this case the higher modes L(j+mp,k+m΄p) (m and m΄ are zero or positive inte-

gers) determined by (3.5) seem to render the series (3.4b) convergent. We have not proved this con-

vergence but assume hereafter.

We label f thus obtained for a given set of n and ℓ as ,nf , . These numbers will be related to the 

customarily used ‘principal quantum number’ N and ‘approximate angular momentum quantum num-

ber’ l by n＝(N＋l)/2 and ℓ＝(N－l)/2, －N≤l≤N (Louck and Shaffer 1960, Noid and Marcus 
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1977). Although we have two labels to discriminate the states, no actions exist to be related to them 

as in integrable systems. In fact, although ℓ has been defined as the minimum value of k’－j’ for the 

suffix appearing in the expansion (3.4b) of Yj,k, our starting wave function 0U  already consists of an in-

finite number of angular momentum states.

The exact expressions of ,nf ,＝En,ℓ+a1 for the three lowest n are easily obtained by directly solving 

the algebraic equations derived from (3.13). They are given, for n＝0, 1 and 2, by

　　　　　　　　　　　　 , ,a d1 0,0 1 , ,f = + +, ^ ^h h
 

(3.14a)

　　　　　　　　　 , ,a d a a a2 1 3 4,1 1 2 1
2

2, , ,f = + + + - + -, ^ ^h h  (3.14b)

　　 , 2 / .Rea d a a a a a3 2 4 4 4 3 7 3,2 1 2 2
2

2 1
2

2
3 3
1

= + + + + +, , ,f - - - -, ^ ^ ^^h h h h8 B  (3.14c)

These solutions for the energies are assured to remain positive in the limit of large ℓ. The state 0U  we 

constructed at the beginning should have the energy 0,0 0f =  and is identified as the ground state. We 

may be able to find the explicit form of ,,3f ,  too by way of Ferrari’s formula.

Unfortunately, it may be impossible to express ,nf , as an analytic function of n and ℓ, as is anticipat-

ed from the expressions (3.13a～c). Nevertheless, we can guess, from the structure of W, ,nf , to be-

have as ℓ3/2 for large ℓ’s. The large n behaviour (or, more important equi-energy contours in the n-ℓ 

space) is not known. The 66 levels for 0≤n≤5 and 0≤ℓ≤10 are given in Table 1.

Equation (3.13) is equivalent to the Schrödinger equation of a particle hopping from site to site on 

an open linear lattice of length n with the probability amplitude rg  for the particle to be on the rth 

site. In this interpretation, both of the ‘potential’ Wrr and the ‘bond strength’ Wrr΄ (r≠r΄) are neither 

periodic as a regular lattice nor random as the Anderson model for a lattice containing impurities (An-

derson 1958, Stöckmann 1999 and references cited therein). This view is parallel to the one present-

ed by Fishman et al. for the kicked rotator model (Fishman et al. 1982) for understanding the dynami-

cal localization (Casati et al. 1979). Owing to this aspect of W, the amplitude rg will not spread over 

Table 1　 ,nf ,  for 0≤n≤ 5 and 0≤ℓ≤10.

n
 ℓ

0 1 2 3 4 5 6 7 8 9 10

0 0.0 1.8 4.2 7.0 10.2 13.7 17.5 21.6 26.0 30.6 35.5
1 4.7 7.8 11.3 15.0 19.0 23.3 27.8 32.6 37.6 42.8 48.2
2 11.6 15.6 19.9 24.4 29.1 34.0 39.2 44.5 50.1 55.8 61.8
3 20.2 24.9 29.9 35.0 40.3 45.9 51.6 57.5 63.5 69.8 76.2
4 30.1 35.5 41.0 46.8 52.6 58.7 64.9 71.3 77.9 84.6 91.5
5 41.3 47.2 53.3 59.5 65.9 72.5 79.2 86.1 93.1 100.2 107.5
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the lattice nor localize randomly at a number of sites.

4. Energy spectrum and quantum numbers

In order to see the degree of randomness of the system, we draw the distribution of the neighbour-

ing level gap S in Fig. 3. The energy range is 0＜ε＜400. Although the number of samples may not 

be large, they seem consistent with the Poisson distribution usually featured in uncorrelated or inte-

grable systems as Berry and Tabor (1977) have shown within semiclassical theory. Their analysis re-

quires the knowledge of the functional structure of the energy level as a function of actions. Our 

system is not integrable but the quantum states can be labelled by the well-defined ‘quantum 

numbers.’　One peculiarity is that there may not be an analytic expression of the energy as a function 

of the ‘quantum numbers’ as can be guessed from (3.14a)～(3.14c). Probably, the result of the semi-

classical analysis is not straightforwardly applied to our system. Rather, our result exhibits the con-

Fig. 4　Parameter dependences of the energy levels in 34＜En,ℓ≡εn,ℓ＋a1＜40. [Left panel] a1-dependences 
for －2＜a1＜1 and a2＝－1. Quantum numbers are (n, ℓ)＝(2,5), (3,3), (0,10), (1,4), (1,8) and (2,6) 
from bottom to top at a1≈0.5. The levels (0,10) and (1,4) crosses at a1≈－1. [Right panel] a2-de-
pendences for －2.5＜a2＜－0.5 and a1＝－1.  Not all levels are displayed. Quantum numbers are 
(n, ℓ)＝(3,1), (0,8), (1,9), (3,2), (4,0), (2,5), (1,8), (1,9) and (5,1) from left to right.

Fig 3.　Distribution of neighbouring level gaps for 0＜ ,nf ,＜200 involving 270 levels (left panel) and 200
＜ ,nf ,＜400 involving 381 levels (right panel). The largest n and ℓ are 23 and 53, respectively.
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ceptual consistency with the random matrix theory (Wigner 1951, Mehta 2004) : the Poisson and 

Wigner distributions are the direct reflections of the regularity and randomness of the Hamiltonian, re-

spectively. We have seen in the previous section that our system is not random. Thus we arrived at 

the most significant conclusion that classical chaos does not necessarily mean quantal Wigner distri-

bution.

In Fig. 4, a1- and a2-dependences of some energy levels in 34＜ ,nf ,＜40 are plotted. The sensitiv-

ity to a2 is very high as compared to a1. The absence of inter-level correlation may also be observed 

from a level-crossing occurring when a1 is varied. Although we have not surveyed wider parameter 

region, this is a rather anticipated result. The model parameter b, which is responsible for the classi-

cal chaos, does not contribute to the recursion relation (3.9) that determines the energy spectrum of 

the quantal system.

5. Wave function

The wave function is a superposition of an infinite number of eigenstates of the angular momen-

tum. It is obtained by solving (3.5) step by step from low to high indices. Suppose j΄≠0. Then the 

term most singular term at x＝0 on r.h.s of (3.5a) may be～j΄/x2. The solution will have a power se-

ries expansion as x B xi i
i 0

,-
=

l!  with ℓ΄＝k΄－j΄, which causes the resulting wave function to be un-

normalizable. Therefore we set j΄＝j＝0. Then writing k΄＝ℓ＋sp, dropping the suffix j΄ and re-

writing L(j΄,k΄) as Ln,ℓ+sp, the equation to be solved is

.

L x
sp

a L x
a sp h

L

x
b L x

b a
L

1
2

2
2

2
2

, , ,

, ,

n sp n sp n sp

n s p n s p

1
1

1
1
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+ +
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+ +
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+ +
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+ +

, , ,

, ,

+ + +

+ - + -

m l l
l

l
l

^c ^ ^

^
^ ^

hm h h

h
h h  (5.1)

This is a linear differential equation with the b-term now playing the role of the source for Ln,ℓ+sp 

(s≥1). The general solution is given by a linear combination of a special solution and a solution of a 

homogeneous equation without the source term. The homogeneous equation has a same form as 

(3.8a) with ℓ in (3.8a) being replaced by ℓ＋sp. Since ε has already been fixed by (3.9) and (3.10), 

the solutions of the homogeneous equation for (5.1) can not be of a finite power series. Therefore, in 

order for the wave function to be normalizable, the solution of (5.1) must be determined so as for the 

special solution to be a finite power series under the presence of the source term. This is done by ap-

propriately choosing the boundary condition.
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The wave functions for the excited states (i.e., n≥1 or ℓ≥1), including the time dependent phase fac-

tor, take the form

　　　　　　　　　 , , ,Ae,
*

,
*

n
b c

n
s

s

2

0

, /p1 0 p

={ { } { {U +

=
, ,

3
b^ ^^ ^h hh h!  (5.2a)

　　　　　　　　
, ,L x c e,
*

, ,n
s

n sp sp
iE t a x x

0
,n 1} { { =, , ,

a
+ +

- + +,^ ^^ ^h hh h  (5.2b)

where E E, ,n n 0= f +, ,  and A is the normalization factor. Remember that 1a  and 1b  are also dependent 

on n and ℓ. In particular, since 1a  can be negative and its absolute value can be arbitrarily large, 1b  

given by (3.7) is generally a complex number. Each of the real and imaginary part of ,,nU ,  having a 

factor cos (Im /c p,p1 0b ) and sin  (Im /c p,p1 0b ) respectively, can then have an infinite number of nodes 

in radial direction. The other zeros of ,,nU ,  are determined by the terms involving Ln,ℓ+sp in (5.2). 

Irregularity in the wave function is expected to feature quantum chaos. However, we have to no-

tice that, irrespective of whether the system is classical or quantal, a mere uncorrelated superposition 

of base functions yields irregular structure of the compounded function with a Gaussian distribution 

for the amplitude (O’Connor et al. 1987, McDonald and Kaufman 1979). Concerning the present 

system, the results of calculations by (5.1) are depicted in Fig. 5 for n＝3 and ℓ＝5 as contour maps of 

Fig. 5　Contour maps of real part of the wave function Re ,,nU ,  for n＝3, ℓ＝5 (ε3,5＝45.862) calculated in 
(5.2a) up to (from upper left to right) s＝0 [k΄＝5], 1 [k΄＝5, 8], 2 [k΄＝5, 8, 11], (from lower left to 
right) 3 [k΄＝5, 8, 11, 14], 4 [k΄＝5, 8, 11, 14, 17], 5 [k΄＝5, 8, 11, 14, 17, 20] in the region |q1|≤2.8, 
|q2|≤2.8. Light and dark parts are positive and negative, respectively. Contours at peripheral region 
of each map denote zeros.
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the real part of the wave function. We here chose such low quantum numbers since (5.1) involves no 

approximation and is free from the restriction posed on the semiclassical approximation. The calcu-

lations were performed up to the fifth step (s＝5), namely, k΄＝5, 8, 11, 14, 17 and 20. The approxi-

mate C5 symmetry observed in the 0th step calculation is gradually lost with the step of calculation 

and an approximate C3v symmetry eventually emerges. The traces of the C3v symmetry of the Hamil-

tonian are always observed in the peripheral region. Exact Cn symmetries are violated for all n, 

while R symmetry remains unbroken. At each step of calculations the wave function reveals an ob-

vious pattern, but the final 3-D structure is complex with somewhat irregular pattern of contour and 

height distribution. 

We notice that the pattern in the maps seems to converge as the calculation proceeds to higher 

steps. More quantitatively, we plot in Fig. 6 the integrations of the square of the absolute value of 

each term, d d,
*

n
s 2
} { {,
^ h#  with n＝3 and ℓ＝5, in (5.2) from s＝0 to 6. (For convenience, the term 

with s＝0 has been normalized to unity.) Obviously, the higher step contributions get less significant 

as s becomes larger. Remember that our principal arguments are based on the assumption that the 

expansion (5.2) converges. The behaviour of d d,
*

n
s 2
} { {,
^ h#  depicted in Fig. 6 supports the validity 

of this assumption.

We have seen that, in our model, the energy levels do not depend on the potential parameter b, i.e., 

/ 0.E b,n =2 2,  According to the Hellmann-Feynman theorem, this differentiation is given by the in-

tegration on the r.h.s. of (2.9c). We numerically performed this integration by adopting the finite 

summations up to the s-th term in (5.2a) as the approximation to the true wave function :

　　　　　　　　 , .D i f f A d d,
*

,
* *

n l
s

n
s

s

s
3 2 2

0

2
2 2{ { } { { { {= -

=
,*
l

l

^ ^^ ^h hh h!#  (5.3)

Fig. 6　Circles : s-dependence of d d,
*s

3 5
2

} { {
^ h# . Squares : s-dependence of D ,

s
3 5
^ h. Pluses : s-depen-

dence of D3,3
s^ h.
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The Hellmann-Feynman theorem states .limD 0,
s

n
s
"

"3
,
^ h  The result is also shown in Fig. 6 for （n, ℓ）

＝(3, 5) and (3, 3). We see that D ,n
s
,
^ h rapidly approaches zero with the increase of s. This is another 

support of the assumption of convergence of (5.2).  

We have already calculated a classical and periodic orbit with the same energy as the quantum state 

with n＝3, ℓ＝3 and the result were shown in Fig. 2 Comparing Fig. 5 with Fig. 2, we see that the re-

gion of large amplitude of the wave function resembles the pattern of the region traced by the classical 

periodic orbit in Fig. 2. This feature reminiscent of the ‘scar’ in the correspondence between classi-

cal and quantum mechanics is explained in terms of semiclassical analysis of dephasing and cancel-

ling effect of the paths that can not fulfil the generalized Bohr-Sommerfeld quantization condi-

tion. The footings to legitimate understanding of this phenomenon have been provided by Heller 

(1984), Bogomolny (1988) and Berry (1989b) within the semiclassical theory. (Their works were 

then followed by a large number of studies on the quantum scars, for which we do not cite references 

here because they are not directly relevant to our present problem. For scars in a smooth and bound-

ed Hamiltonian system, see, e.g., Santhanam et al. (1997).) The semiclassical approximation is ex-

pected to be valid for large quantum numbers. However, regarding the self-cancelling of aperiodic 

bound motion as a universal quantal phenomenon, the appearance of a precursor of the ‘scar’ even at 

such small quantum numbers as ones taken here may be rather natural. We deem this as the third 

check of the validity of our calculation scheme.

6. Spontaneous symmetry breaking ?

The most striking phenomenon emerges when we take the limit b→0, in which the Hamiltonian re-

stores the O(2)～U(1) invariance. In this limit, from (3.7) together with (3.11), the symmetry break-

ing factor in wave function (5.2) survives :

　　　　　　　　　　　　　 , ,Ae,
* /

n
i c p,p1 0+{ {U ,
b^ h  (6.1a)

　　　　　　　　　　 .a a a a n2 2 21 2 1 1
2

2 ,b = + + +^_ hi  (6.1b)

The remaining factor generally yields complex azimuthal angle dependences. Owing to c0,p=c0,3 on 

the exponent in (6.1), the symmetry U(1) breaks to C3v.

We found this solution by allowing the U(1)-breaking factor 1b b=l  in (3.5a) be nonzero even 

when b＝0. In this case, 1b  is related to the dynamical model parameters as given by (6.1b). We 

may call this phenomenon the spontaneous symmetry breaking.
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More familiar solutions are obtained by requiring 1b  be zero and solving (3.6) for arbitrary j and 

k. This is the equation that is derived by separating the variables for the radial and azimuthal degrees 

of freedoms. The arguments proceed in a same way as those given below (3.8) and result in the ex-

actly same eigenvalue equation (3.13). Since the equation is separable, the infinite summation over 

the angular momentum variable in (5.2b) is not necessary to express the eigenfunctions. 

　To make the correspondence to the separable case more clear, we write down the eigenvalue equa-

tion in terms of the radial and azimuthal coordinates r and θ as

　　　　　　　　　　 .r r r r V r E2

2

2 2

2

2
2

2
2

2
2
i

U U- - - + =^d hn  (6.2)

As usual, separating the eigenfunction of the angular momentum, we next write Φ＝eimθR(r) to obtain

                                               . 0.dr
d

rdr
d

r
m V E R2

2

2

2
+ + =- -c m  (6.3)

The energies are labelled by the principal and azimuthal quantum numbers n and m. Each level is 

generally doubly degenerated. The degeneracy two is insufficient to produce the complex azimuthal 

patterns of the wave functions expected to be observed in the case .01!b  In order to construct a 

state with broken symmetry from the solutions of (6.2) and (6.3), we need infinite number of states 

with distinct m’s that are equal modulo p or states with distinct energies that add up to form states 

which are not the solutions of (6.2).

7. Summary and remarks

We formulated the problem of investigating quantum chaos as an inverse problem. We started 

with choosing a certain wave function to construct a bounded Hamiltonian with C3v symmetry that 

shows the classical chaos. We then quantized the system and obtained exact expressions for the al-

gebraic equation that determines the energy levels. 

Exact expressions for the levels with small quantum numbers are obtained. Higher levels are cal-

culated numerically. It turned out that the energy spectrum does not depend on the parameter b that 

governs the breaking of U(1) invariance and is responsible for the emergence of classical chaos. 

In spite of chaos exhibited in the classical system, the eigenvalue equation for the quantized system 

involves no randomness and the level spacing seems to obey Poisson distribution. This is under-

standable by noting that the energy spectrum does not depend on b and, in the limit b→0, the system 

recovers U(1) and becomes separable. 

Our classically chaotic quantum system is marked by the solvability and the Poissonian level distri-



Classical Chaos and Quantum Mechanical Solvability in Inverse Problem

63

bution, thereby providing a first counter example against the expectation that the level distribution of 

any classically chaotic system is Poissonian after quantization. These intriguing aspects of our mod-

el may be due to the peculiarity of the inverse method employed to construct the simplest class of po-

tential in two dimension. 

The iterative method to calculate the wave function of the excited states seems to converge rapidly 

as long as the model parameters and the low quantum numbers we adopted are concerned. Whether 

this convergence is assured in the whole parameter space is not known. In particular, the case with  

a1＞0 may be problematic because the energy branch (3.14a) does not yield the correct energy E0＝−

a1 for n＝ℓ＝0. We also expect the feature of our model to persist for other C3v symmetry with p≥4 

provided that the iteration method converges.

Appendix
  Here, we collect formulae that are used to derive (3.5) in the text. For brevity, we write 

　　　　　　　　　　　　　　　　　 x L x, ,j k
j

j k/h -
l l

l
l l ^^ hh  (A1)

in (3.4b). Performing differentiations, we have
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In the above, summations over j΄(≥ j) and k΄(≥k) are implied.　(3.5) is derived by using identities

　　 / , / , .c c x c j k c x c c j k c, , , ,
*

, , ,j p k j p k j k j k j k j k j k1 1= = + = +22 2 2{ {+ +- - * *l l l ll l l l l l l l l l l l l l^ h  (A.7)

together with (A.1)

*This paper had been completed by April 20, 2011 but its publication was delayed due to March 11 

earthquake in Japan.
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